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1. Introduction

We are currently undertaking a program of research aimed at extending the results
and techniques of the Graph Minors Project of Robertson and Seymour to matrices
and matroids. Here we report on where we stand and where we expect to go.

In particular, we discuss the structure of “minor-closed” classes of matrices over a
fixed finite field. This requires a peculiar synthesis of graphs, topology, connectivity,
and algebra. In addition to proving several long-standing conjectures in the area, we
expect the structure theory will help to find efficient algorithms for a general class of
problems on matrices and graphs.

Most combinatorial computational problems are trivial in the sense that they are
typically finite. However, even for modest size problems, enumerating the possi-
bilities is practically infeasible; it often results in algorithms whose running time is
exponential in the size of the problem. We seek smarter, more efficient, algorithms. In
the theory of algorithms efficient typically means that the running time is polynomial
in the size of the problem.

Often the problems are modeled by graphs (networks) or matrices. The better
picture we have of the model, the more likely it is that we can develop a quick al-
gorithm for the problem. For instance, the problem at hand may be more tractable
if the modeling graph can be drawn in the plane, or some other particular surface,
without crossings. Then it is relevant that we can test efficiently if the graph has such
advantageous appearance. Surface embeddability, and other related properties, are
preserved when deleting an edge from the graph or contracting an edge (contracting
means deleting the edge and identifying its ends). The result of any series of such
deletions and contractions is called a minor of the graph. In this terminology, testing
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surface embeddability is testing a particular minor-closed graph property. So moti-
vated by real-word computational problems, we end up with the fundamental question
if minor-closed graph properties can be tested efficiently.

That this is possible indeed for any fixed minor-closed graph property is one of
the consequences of the ground-breaking work of Robertson and Seymour in their
Graph Minors Project. One major outcome of this project is their proof of Wagner’s
Conjecture that graphs are “well-quasi-ordered” under the minor-order, which is the
following theorem.

The Graph Minors Theorem ([31]). Any infinite family of graphs contains two
members such that one is isomorphic to a minor of the other.

This implies that for any minor-closed graph property there are only finitely many
excluded minors, these are graphs that do not have the property but whose proper
minors do have the property. For planarity, for instance, there are exactly two excluded
minors: K5 and K3,3; this is Kuratowski’s famous characterization of planarity [22].

So, by the Graph Minors Theorem, to test a minor-closed graph property we only
need to test containment of each of its excluded minors individually. That this is
possible is another crucial outcome of Robertson and Seymour’s work.

The Graph Minor Recognition Theorem ([29]). For each graph H , there exists a
polynomial-time algorithm for testing if a graph has a minor isomorphic to H .

This answered one of the twelve open problems in Garey and Johnson’s 1979 book
on computational complexity [8].

So minor-closed graph properties can be tested efficiently. However, as noted
earlier, also matrices are widely used as modeling tools, for example in integer pro-
gramming models for operations research. Integer programming models are very
general and powerful, but in a sense too general; they lead to “NP-hard” problems.
However if the matrix in an integer programming model is totally unimodular, that
means if all subdeterminants are 0, 1 or −1, then linear programming methods do
solve the problem [20], and these methods are efficient. So this raises the issue of
testing totally unimodularity, another open problem back in ’79, in Garey and John-
son’s book. Now, it turns out that a matrix being totally unimodular means that it
is in a certain sense representable over any field, and also this embeddability prop-
erty is closed under certain minor-operations. So also here the fundamental issue of
testing minor-closed properties arises. For that we work at extending Robertson and
Seymour’s graph minor theory to matrices. As the issues involved do not so much
concern the actual matrices, but rather the underlying “matroids”, we work in that
setting.

A matroid consists of a finite set E, the ground set of the matroid, and a function r ,
the rank function of the matroid. This rank function is defined on the subsets of E and
satisfies the following properties: 0 ≤ r(X) ≤ |X| for X ⊆ E; r(X) ≤ r(Y ) for all
X ⊆ Y ⊆ E and r(X∪Y )+r(X∩Y ) ≤ r(X)+r(Y ) for all X, Y ⊆ E. We call r(X)

the rank of X and r(E) the rank of the matroid. The rank function of a matroid M is
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denoted by rM . Two matroids are isomorphic if there is a rank-preserving bijection
between their ground sets.

Matrices yield matroids: If A = (ae : e ∈ E) is a matrix with columns ae over a
field F, then the linear rank of the column submatrices (ae : e ∈ F) with F ⊆ E is the
rank function of a matroid, the vector matroid M(A) of A. If a matroid is isomorphic
to a vector matroid of a matrix over F, we say that the matroid is representable over F

or F-representable. (A vector matroid is often described as a configuration of points in
a linear, affine or projective space instead of as the collection of columns of a matrix.)

Also graphs yield matroids: Let G be a graph with edge set E and vertex set V .
The rank of a graph is the number of its vertices minus the number of its components.
If F ⊆ E, then the rank of F is the rank of the subgraph of G with edge set equal
to F . This rank yields the rank function of a matroid, the cycle matroid M(G) of G.
A matroid isomorphic to such a cycle matroid of a graph is called graphic. A graphic
matroid is representable over any field by a matrix with two non-zero entries in every
column, one equal to 1 and one equal to −1. We assume the reader to be familiar with
the standard notions from graph theory. For matroid theory we refer to Oxley [25] or
Welsh [43], but we will define the matroid terminology we use, as we go.

Now we define matroid minors. Let e be an element of the ground set E of
a matroid M . Deleting e from M is replacing M by the matroid with ground set
E − {e} and with rank function equal to the restriction of rM to subsets of E − {e}.
Contracting e from M is replacing M by the matroid with ground set E−{e} and with
rank function rM(X ∪ {e}) − rM({e}) for each X ⊆ E − {e}. A minor of a matroid is
the result of any sequence of deletions and contractions.

A minor of a vector matroid over a field F is representable over the field as well. In-
deed, deleting an element amounts to just deleting the corresponding column whereas
contracting an element f amounts to removing af from (ae : e ∈ E) and projecting all
other columns in the direction of af on some arbitrary hyperplane not containing af .
Deletions and contractions in a graph are in one-one correspondence with deletions
and contractions in its cycle matroid. Thus the cycle matroid of a minor of a graph is
a minor of the cycle matroid of the graph.

So the notion of graph minors is in essence algebraic, or geometric, and in that
sense it generalizes to matrices and matroids. This raises the question to what extent
Robertson and Seymour’s graph minor theory extends to matroids. The following
conjecture was by Robertson and Seymour, although to our knowledge not in print.

The Well-Quasi-Ordering Conjecture. Let F be a finite field. Then any infinite set
of F-representable matroids contains two matroids, one of which is isomorphic to a
minor of the other.

As yet, the Well-Quasi-Ordering Conjecture has not been resolved for any fi-
nite field. Note that it is equivalent to the conjecture that, for a finite field F, any
minor-closed class of F-representable matroids has a finite number of F-representable
excluded minors.
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The finiteness of the field in the Well-Quasi-Ordering Conjecture is essential.
Indeed, suppose F is an infinite field and consider for each integer n ≥ 3, a 2n × 3
matrix with columns p1, . . . , pn and q1, . . . , qn, where p1, . . . , pn are vectors in
general position in F

3 and each qi is spanned by pi and pi+1, but is not spanned by
any other pair among p1, . . . , pn (where pn+1 = p1). As F is infinite, such matrices
clearly exist. Among the vector matroids of these matrices none is a minor of another.
Indeed, all members of the collection have rank 3, so all minors that use a contraction
have too low rank to be in the collection; deleting an element from a member of the
collection destroys the unique cyclic arrangement of linearly dependent triples pi , qi ,
pi+1 in a way that cannot be repaired by further deletions.

We conjecture additionally that for matroids that are representable over a finite
field minor-closed properties can be recognized in polynomial time, in other words
we conjecture that also the Graph Minor Recognition Theorem extends.

The Minor-Recognition Conjecture. For any finite field F and any F-representable
matroid N , there is a polynomial-time algorithm for testing whether an F-repre-
sentable matroid contains a minor isomorphic to N .

At the heart of the Graph Minors Project is Robertson and Seymour’s Graph Minors
Structure Theorem [30]. It describes constructively the graphs that do not contain a
given graph as a minor. This constructive description enables techniques to establish
the well-quasi-ordering and algorithmic consequences. For matroids, Seymour [36]
used this approach successfully for characterizing total unimodularity (see Section 3).
Our hope is to use the same strategy for general matroids that are representable over
finite fields. Therefore we are developing a structure theory for such matroids. As
a major role in the theory of graph minors is played by connectivity, we need an
extension of graph connectivity to matroids.

The basic ingredients of graph connectivity are separations, which tell where
the connectivity is not that high, and Menger’s Theorem, which provides a way of
certifying that the connectivity is not that low. A separation of a graph G is a pair
(G1, G2) of subgraphs of G such that G = G1 ∪ G2; the order of the separation
(G1, G2) is the number of vertices of G that lie in both G1 and G2. A graph is
k-connected if it has no separation (G1, G2) of order l less than k such that G1 and
G2 have at least l edges each. One of the fundamental theorems of graph theory is
Menger’s Theorem.

Menger’s Theorem ([24]). If G is a graph and S and T are two sets of vertices, then
there either exist k disjoint paths, each connecting a vertex in S with a vertex in T , or
(exclusively) G has a separation (G1, G2) of order less than k such that S lies in G1
and T in G2.

As an illustration of how this theorem plays a role in finding minors consider the
following easy result of Dirac [4]: A 3-connected graph with at least 4 vertices has a
minor isomorphic to K4. (Kn denotes the complete graph with n vertices; complete
means that every pair of vertices is connected by an edge.) Here is a proof of Dirac’s
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result: we may assume the graph has two non-adjacent vertices s and t , otherwise
the graph is complete and we are done. Apply Menger’s Theorem to the set S of
neighbours of s and the set T of neighbours of t . This yields three P1, P2 and P3
from s to t that only meet at their ends. As G is 3-connected, G − s − t is connected,
so there exists a path Q that connects two of these paths and misses the third path.
The union of P1, P2, P3 and Q clearly has a minor isomorphic to K4. So Dirac’s
result follows. This is a very easy result of course, but it may convince the reader
of the need of a notion of matroid connectivity and a matroidal version of Menger’s
Theorem.

A separation of a matroid M is a partition (X, Y ) of the ground set E. The order
of the separation (X, Y ) is rM(X)+ rM(Y )− rM(E)+ 1; for a representable matroid
this is the dimension of the intersection of the subspaces spanned by X and Y plus 1.
A matroid is k-connected if it has no separation (X, Y ) of order l less than k such
that X and Y have size l or more. If (G1, G2) is a separation of G where E1 and E2
are the edge sets of G1 respectively G2, then (E1, E2) is a separation of M(G). When
G1, G2, and G are connected graphs, the orders of these separations are the same.
This is enough to consider matroid separations and matroid connectivity as genuine
generalizations of these notions for graphs. And there is a matroidal generalization
of Menger’s Theorem as well.

Tutte’s Linking Theorem ([42]). Let M be a matroid and X and Y be disjoint subsets
of its ground set. Then there exists a minor of M in which (X, Y ) is a separation of
order at least k or (exclusively) M has a separation (A, B) of order less than k with X

in A and Y in B.

This follows quite easily from Edmonds’Matroid Intersection Theorem [7], which
is one of the fundamental theorems of matroid theory. So we see that the basic theory
of graph connectivity does extend quite well to matroids.

Besides the fact that a matroid structure theory will help proving the Well-Quasi-
Ordering Conjecture and Minor-Recognition Conjecture for matroids, we also expect
that it will provide a handle on the following conjecture, probably the most famous
open question in matroid theory.

Rota’s Conjecture ([33]). Let F be a finite field. There are, up to isomorphism, only
finitely many excluded minors for the class of F-representable matroids.

This also has computational relevance, namely for the question how hard it is to
decide if a matroid given by an oracle for the rank function is representable over a
field F. Unfortunately, it does take exponentially many oracle calls to decide this,
for any field [38]. But if Rota’s conjecture is true, then for every finite field F there
exists, for every non-F-representable matroid, a polynomial-length certificate for this
non-representability, that requires only a constant number of oracle calls. (It is known
that this can be done by a quadratic number of oracle calls [14].)

For the three smallest fields all excluded minors for representability over the field
are known: there is one for GF(2) (Tutte [40]), there are four for GF(3) (Bixby [1]
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and Seymour [37], independently), and there are seven for GF(4) (Geelen, Gerards
and Kapoor [9]). For all other finite fields, Rota’s conjecture is still open. A structure
theory could well provide a way to prove it.

Also in Rota’s conjecture finiteness of the field is essential. Lazarson [23] showed
that there are an infinite number of excluded minors for representability over the reals
and this is certainly true for all other infinite fields.

Summarizing, en route for these three conjectures we are working at establishing
the structure of minor-closed proper subclasses of matroids representable over a finite
field. This work has already had some success. It turns out that excluding the cycle
matroid of a planar graph as a minor imposes tangible structure on matroids over finite
fields, so we begin with discussing that.

2. Excluding a planar graph

Let F be a finite field and let H be a planar graph. We give a constructive structural
description of F-representable matroids with no M(H)-minor and show that this de-
scription enables significant progress on the three conjectures in Section 1. Essentially
the structure is to be decomposable into small pieces along low-order separations. We
will first explain what that means.

A branch-decomposition of matroid M is a tree T in which all vertices have
degree 1 or 3, where the degree-1 vertices of T are in 1-1 correspondence with the
elements of the ground set E of M . The width of an edge e in T is the order of
the separation (X, Y ) of M where X contains the elements of E that correspond to
the degree-1 vertices of T in one component of T − e and Y the elements of E that
correspond to the degree-1 vertices of T in the other component of T − e. So a
branch-decomposition is a data-structure for a collection of separations. The width
of a branch-decomposition is the maximum of the widths of its edges and the branch-
width of a matroid is the minimum of the widths of all its branch-decompositions.
So roughly low branch-width means to be decomposable into small pieces along
low-order separations.

Branch-width is a matroid generalization of branch-width for graphs defined by
Robertson and Seymour [28]. For graphs it is, up to a constant multiplicative bound,
the same as tree-width, also introduced by Robertson and Seymour. In the Graph
Minors Project they mainly use tree-width and that notion does extend to matroids
[19] as well. But branch-width is easier to work with for matroids, so here we will
only use branch-width, also for graphs. Robertson and Seymour prove the following
result.

The Grid Theorem for graphs ([27]). For each planar graph H there is an integer k

such that any graph with branch-width at least k has a minor isomorphic to H .

This result is called the Grid Theorem because, as every planar graph is a minor
of a grid, it suffices to prove it for the case that H is a grid. Here, a grid, or rather
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an n by n grid, refers to the graph with a vertex (i, j) for each pair of integers i

and j between 1 and n and an edge between any two pairs (i1, j1) and (i2, j2) with
|i1 − i2|+ |j1 − j2| = 1. If a matroid has a minor isomorphic to a cycle matroid of an
n by n grid, we say it has a grid-minor. To convince oneself that each planar graph
H is a minor of a sufficiently large grid, visualize H as drawn without crossings and
with the edges and vertices as thick lines and dots on a piece of grid paper with a very
fine grid.

Consider a class of graphs that do not have a fixed planar graph as a minor. By the
Grid Theorem for graphs, the members of that class have bounded branch-width. This
constructive characterization provides considerable traction for both algorithmic and
structural problems. For example, Robertson and Seymour [26] prove that any class
of graphs of bounded branch-width is well-quasi-ordered. This extends to matroids
over finite fields.

Theorem ([12]). Let F be a finite field and k an integer. Then each infinite set of
F-representable matroids with branch-width at most k has two members such that
one is isomorphic to a minor of the other.

Johnson, Robertson, and Seymour [21] conjectured that also the Grid Theorem
for graphs extends to matroids over finite fields and this is indeed the case.

The Grid Theorem for matroids ([13]). For each finite field F and each planar
graph H , there exists an integer k such that each F-representable matroid with branch-
width at least k has a minor isomorphic to M(H).

As a consequence we obtain the following partial result towards the Well-Quasi-
Ordering Conjecture.

Corollary. Let F be a finite field and H a planar graph. Then any infinite set of
F-representable matroids with no minor isomorphic to M(H) contains two matroids
such that one is isomorphic to a minor of the other.

In combination with results of Hliněný [18], we also obtain partial progress towards
the Minor-Recognition Conjecture.

Corollary. For each finite field F and each planar graph H , there is a polynomial-
time algorithm for testing whether or not an F-representable matroid contains a minor
isomorphic to M(H).

So for matroids over a fixed finite field we can efficiently test all minor-closed
properties that do not hold for the cycle matroid of all planar graphs.

Geelen and Whittle [17] show that for a finite field F and integer k, the number of
excluded minors for F-representability that have branch width at most k is finite. In
combination with the Grid Theorem for matroids this yields the following result.

Corollary. For each finite field F and each planar graph H , there are only finitely
many excluded minors for F-representability that do not have M(H) as a minor.
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We see that the structure imposed on a class of matroids by excluding the matroid
of a planar graph as a minor yields restricted solutions to the Well-Quasi-Ordering
Conjecture, the Minor-Recognition Conjecture, and Rota’s Conjecture, and that is a
promising beginning.

The Grid Theorem for matroids is absolutely central in developing a structure
theory for matroids. When specialized to graphs, the proof in [13] is different from
the existing proofs in [3], [27], [32]. It is important to note that we had access
to an extraordinary 150-page handwritten manuscript [21] of Johnson, Robertson,
and Seymour describing their progress towards a grid theorem for matroids. The
techniques we learned from their manuscript played a crucial role in parts of our
proof. The proof also makes use of earlier results we obtained together with Neil
Robertson [10], [11].

Regarding the result above on well-quasi-ordering of F-representable matroids
of bounded branch-width it is interesting to note that the finiteness of F is essential
there. This is illustrated by the sequence of matrices given in Section 1, below the
Well-Quasi-Ordering Conjecture; they all have branch-width at most 3, as they all
have rank 3. On the other hand, there are only finitely many excluded minors for the
class of all matroids of branch width at most k, representable or not [11].

We conclude this section with a comment regarding Rota’s Conjecture. We have
seen that for every finite field GF(q) there are a finite number of excluded minors for
GF(q)-representability of any given branch width. In [15] it is proved that an excluded
minor for GF(q)-representability of sufficiently large branch width cannot contain a
PG(q + 6, q)-minor. (PG(n, q) is the matroid represented by points of the projective
geometry of order n over GF(q).) So it follows that if Rota’s Conjecture fails for
GF(q), then there must exist excluded minors with arbitrarily large grid-minors and
no large projective geometry as a minor.

3. An example: the structure of regular matroids

With the results in the previous section in hand we proceed towards a structure theory
for matroids over finite fields. One of the prototypes of structural matroid theory and
its algorithmic consequences concerns the totally unimodular matrices mentioned in
Section 1. The question if a certain given matrix is totally unimodular can be trans-
lated into the question if a related, easy-to-construct, GF(2)-representable matroid is
representable over all fields. Such matroids are called regular. Regularity is a minor-
closed property. Tutte [40] proved that a GF(2)-representable matroid is regular if and
only if it does not have a minor isomorphic to PG(2, 2), also called the Fano matroid,
or to the dual of PG(2, 2). Here the dual of a matroid M is the matroid M∗ with the
same ground set E as M and with rank-function rM∗(X) = |X|−rM(E−X)+rM(E).
Representability over a field F is closed under duality, hence so is regularity. Taking
minors commutes with duality; although the roles of deletion and contraction swap.
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Tutte’s excluded minor characterization of regular matroids is one of the gems
of matroid theory, but it does not tell how to decide if a given GF(2)-representable
matroid is regular or not. That question was answered by a structural result, Seymour’s
Regular Matroid Decomposition Theorem [36]: A matroid over GF(2) is regular if
and only if it is the 1-, 2- or 3-sum of graphic matroids, duals of graphic matroids
and copies of a particular 10-element matroid called R10. Here a 1-, 2- or 3-sum of
two (representable) matroids is carried out by embedding each of them in a distinct
projective space and then combining these projective spaces by taking either their
direct sum, in case of a 1-sum, or identifying single points or lines, in case of a 2-sum
or a 3-sum. These “meeting” points or lines should be in both matroids and may or
may not be deleted from the matroid after the composition. The sums as well as the
reversed “decomposition” operations preserve regularity.

So Seymour’s result gives a structural description of the class of regular matroids.
Their “global structure” is that they are composed from smaller pieces along low-
order separations. The pieces sit together in a tree-like fashion. The description of
these pieces provides the “local structure”: each piece is either a graphic matroid, the
dual of a graphic matroid or isomorphic to R10. This combination of global and local
structure is typical for all structural results in this paper.

Seymour’s structural characterization of regular matroids is constructive, it can be
used to design an algorithm for testing regularity in polynomial time. This goes as
follows. First decide if the matroid is a 1-, 2- or 3-sum of smaller matroids. This can be
done in polynomial time, as gluing two matrices together leaves a separation of order
at most 3 in the composed matroid and Cunningham and Edmonds [2] observed that
detecting these is a matroid intersection problem, which is solvable in polynomial time
(Edmonds [7]). When the matroid is fully decomposed into “4-connected pieces”,
each piece is tested for being isomorphic to R10, which is trivial, or being a graphic
matroid or the dual of a graphic matroid, which can be done by Tutte’s polynomial-
time algorithm for testing graphicness [41]. If all pieces pass the test, the original
matroid is regular, otherwise it is not.

By the relation between regularity and total unimodularity this yields an algorithm
for testing if a real matrix is totally unimodular or not (see Schrijver [35, Chapter 20]
for a description of this algorithm in terms of the matrices). This is the only known
polynomial-time algorithm for testing totally unimodularity. Thus the structure of
matroids is crucial for the algorithmic aspects of this central property in operations
research and combinatorial optimization. Actually matroids in general do play a major
role in the theory of combinatorial optimization, see Schrijver [34]. A book on matroid
decomposition is Truemper [39], it mainly concerns regular matroid decomposition
and related topics.

With Seymour’s regular matroid decomposition in mind we next discuss what we
expect to be the structure of minor-closed classes of matroids that are representable
over a finite field. It should be noted that the results will not be as “tight” as in Sey-
mour’s decomposition theorem. Seymour provided a constructive description of all
binary matroids that contain neither the Fano matroid nor its dual as a minor. More-
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over, none of the matroids obtained via that construction contain the Fano matroid
or its dual. In contrast, the Grid Theorem for graphs provides a construction for the
graphs that do not contain a given planar graph H as a minor, but some graphs ob-
tained via the construction may contain H as a minor. The construction is, however,
sufficiently restrictive that it does not build all planar graphs. For algorithmic and
well-quasi-ordering purposes, this is good enough.

4. Global structure and local structure

In Section 2 we discussed the structure of classes of matroids over finite fields that
do not have a minor isomorphic to the cycle matroid of a particular planar graph:
they can be decomposed into small pieces along low-order separations; they have low
branch-width. So explorations beyond that concern matroids with high branch-width.
The existence of large grid-minors in such matroids is useful in investigating their
structure, but a matroid may have several high branch-width parts that are separated by
low-order separations and we have to describe the structure of these parts separately.
To get a handle on these parts, Robertson and Seymour [28] introduce tangles. A
tangle really just indicates for each low-order separation on which side a particular
high branch-width part lies. Formally, a tangle of order t assigns to each separation
(X, Y ) of order less than t one of X and Y as the small side of (X, Y ) and the other
side as the big side of (X, Y ). It is required that no three small sides of the tangle
cover the ground set of the matroid and that no singletons are big. It turns out that the
maximum order of a tangle in a matroid is the branch-width of the matroid; for graphs
this was shown by Robertson and Seymour [28] and for matroids by Dhamatilike [5]
(although this result was implicit in [28]).

Combining this with the Grid Theorem, we see that grid-minors yield tangles.
Indeed, if F ⊆ M is the set of elements of an n by n grid-minor of M , then F

partitions naturally in the “horizontal” and “vertical” lines of the grid. If we consider
for each separation (X, Y ) of order less than n the side that contains a line in F as big,
then that yields a tangle of order n. It was shown in [16] that for any finite field F and
any n there exists an integer t such that in any F-representable matroid any tangle of
order t controls an n by n grid-minor. This generalizes a result from [32] for graphs.
Here a tangle controls a minor N of M if no small side of a separation of order less
than the rank of N contains all elements of N .

So tangles “locate” highly connected areas of the matroid. If all small sides of
one tangle are small in some other tangle, then they both seem to refer to the same
highly connected part but the latter tangle does that more accurately. Therefore we
are mainly interested in the maximal tangles, those for which the collection of small
sets is inclusion-wise maximal. It turns out that matroids, like graphs [28], can be
viewed as consisting of their maximal tangles put together in a tree-shaped structure,
see [16] for details. This provides a global picture of a matroid. To complete that
picture we have to describe the individual tangles, the local structure.
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To explain what we mean with that, we first explain what it means to reduce a
set S in an F-represented matroid M . Consider M as a collection E of points in a
projective geometry. Let X be the span of E − S in that projective geometry. For
each S′ ⊆ S whose span meets X in a single point, we call that point xS′ . Let Y be the
set of all points xS′ for all such sets S′. Replacing M by the matroid represented by
the union of Y and E − S is called reducing S. (For graphs, this more or less means
to remove the edges in S and to add an edge between any pair of vertices that both lie
in S and in the complement of S.)

Let C be a class of matroids. A tangle has local structure in C if there exist
separations (S1, B1), . . . , (Sk, Bk) in M with disjoint small sides S1, . . . , Sk such
that the matroid obtained from M by reducing each of S1, . . . , Sk is in C. To describe
the full structure we only need to characterize the minor-closed classes C that provide
the local structure of tangles in matroids over the finite field that do not contain a
particular minor.

5. The local structure of graph tangles

The Graph Minor Structure Theorem says that for any n there exists a surface � and
integers m, d, k such that the tangles of a graph with no minor isomorphic to Kn have
local structure in the class of graphs that lie on a surface � with m vortices of depth
at most d and k extra vertices. We explain what this means.

A vortex with connectors v1, . . . , vp is a graph H that is the union of graphs
H1, . . . , Hp such that vi is a vertex in Hi for each i = 1, . . . , p and such that if a
vertex v of H occurs in Hi and Hj for some i, j = 1, . . . , p then v either occurs in all
of Hi+1, . . . , Hj−1 or in all of Hj+1, . . . , Hi−1 (indices modulo n). The maximum
size of the subgraphs H1, H2, . . . , Hp is the depth of the vortex.

A graph is on a surface � with m vortices of depth at most d if it can be constructed
as follows: take a graph drawn on �, select m faces and add to each of these faces a
vortex of depth d to G that meets G and the other added vortices only in its connectors
v1, . . . , vn which lie in that order around the boundary of the face. If we additionally
add k new vertices and new edges from these vertices to each other and to the rest
of the graph, we obtain a graph that lies on a surface � with m vortices of depth at
most d and k extra vertices.

6. The local structure of matroid tangles

What are the minor-closed classes needed to describe the local structure of matroids
that are representable over a finite field? One natural minor-closed class is the class
of graphic matroids. Also, if F

′ is a subfield of F, then the class of F
′-representable

matroids is a minor-closed class of F-representable matroids. There is another natural
class, of Dowling matroids. They are like graphs and originally introduced by Dowling
[6] and studied in greater depth by Zaslavsky [44], [45].
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A Dowling matroid is a matroid that can be represented over a field F by a matrix
with the property that every column has at most two non-zero elements. We call
such matrix a Dowling representation of the matroid. If the ratio between the non-
zero elements in each column of a Dowling representation is in a subgroup � of the
multiplicative group of F, we call the matroid a Dowling matroid over �. One can
naturally associate a graph G(A) with a Dowling representation A. Each row of A is
a vertex of G(A) and each column of A with two non-zeroes yields an edge in G(A)

connecting the vertices corresponding to the rows that have the non-zeroes in that
column. Thus we get for each surface and each subgroup of the multiplicative group
of F the class of F-representable Dowling matroids that have Dowling representations
over the subgroup and whose associated graphs embed on the surface. Obviously
such a class is minor-closed.

In fact, we can extend such minor-closed class by allowing a bounded number
of “vortices” of bounded depth, these are obtained by adding matroid elements into
bounded-rank subspaces arranged in a cyclic manner around a face in the embedding,
similar to vortices in graphs.

Finally we can extend a minor-closed class C of matroids by considering for some
integer k the class of all rank-l perturbations of the members of C with l ≤ k. Here an
F-representable matroid M is a rank-l perturbation of an F-representable matroid N

if M and N have representations A and B, respectively, with the linear rank of A−B

equal to l.
Splitting a vertex in a graph amounts to a rank-1 perturbation of its cycle matroid.

So adding k vertices to a graph amounts to adding a single vertex followed by a
rank-(k − 1) perturbation of the cycle matroid. Adding a single vertex to a graph G

does in general not correspond to a low-rank perturbation. However, fortunately, the
cycle matroid of the resulting graph has a Dowling representation A with G(A) = G.
Hence the Graph Minors Structure Theorem is captured by the matroid classes given
above.

Now we state our main results and conjectures on the structure of minor-closed
classes over a finite field GF(q), where q = pk for some fixed prime p and some fixed
integer k. We distinguish between three types of minor-classes. The first type are the
classes that do not contain the cycle matroid of large complete graphs nor their duals.
The second type are the classes that do not contain large projective geometries over
the prime field GF(p) of GF(q). The third type are the classes that do not contain
large projective geometries over GF(q). In each of the cases, T is a tangle in a
GF(q)-representable matroid.

Below n is a fixed integer and each of the qualitative bounds “low”, “bounded”,
or “sufficiently large” indicates a bound only depending on q and n, so not on the
particular tangles or matroids.

Excluding M(Kn) and M(Kn)∗. We believe that we have proved that if T has
sufficiently large order and does not control a minor isomorphic to M(Kn) or to
M(Kn)

∗, then T has local structure in the class of low-rank perturbations of GF(q)-
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representable matroids that can be obtained by adding a bounded number of vortices
of bounded depth to a Dowling matroid whose associated graph is embedded in a
surface of low genus, or of the duals of such matroids. This implies the Graph Minors
Structure Theorem.

With this result and duality, we can now restrict our attention to tangles that control
the cycle matroid of a large complete graph.

Excluding PG(n, p). We conjecture that if T controls a minor isomorphic to M(Km)

for a sufficiently large integer m but T does not control a minor isomorphic to
PG(n, p), then T has local structure in the class of low-rank perturbations of GF(q)-
representable Dowling matroids.

Roughly speaking the conjectures above state that if M is a GF(q)-representable
matroid with no minor isomorphic to PG(n, p), then M admits a tree-like decom-
position such that each part is either essentially a Dowling matroid or is essentially
the dual of a Dowling matroid. For a field of prime order this would give the re-
quired constructive structural characterization of the minor-closed proper subclasses
of matroids representable over the field.

It is interesting to note here that a slight extension of Seymour’s regular matroid
decomposition says that if a GF(2)-representable matroid has no minor isomorphic
to PG(2, 2) then it can be constructed from graphic matroids, their duals, and copies
of R10 and copies of the dual of PG(2, 2), by 1-, 2- and 3-sums [36]. As graphic ma-
troids are GF(2)-representable Dowling matroids and as R10 and the dual of PG(2, 2)

are low-rank perturbations of a trivial matroid, this result of Seymour’s implies the
conjecture above for case that q = 2 and n = 2.

Excluding PG(n, q). For the case that q is not prime, we conjecture that if T con-
trols a minor isomorphic to PG(m, p) for a sufficiently large integer m but T does
not control a minor isomorphic to PG(n, q), then T has local structure in the class of
GF(q)-representable low-rank perturbations of matroids that are representable over a
proper subfield of GF(q).

Finally we can summarize all of the above into a single conjecture. For any minor-
closed proper subclass M of GF(q)-representable matroids, each matroid in M admits
a tree-like decomposition such that each part is either essentially a Dowling matroid,
or is essentially the dual of a Dowling matroid, or is essentially represented over a
proper subfield of GF(q).
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