
Convex optimization of graph Laplacian eigenvalues
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Abstract. We consider the problem of choosing the edge weights of an undirected graph so as
to maximize or minimize some function of the eigenvalues of the associated Laplacian matrix,
subject to some constraints on the weights, such as nonnegativity, or a given total value. In
many interesting cases this problem is convex, i.e., it involves minimizing a convex function
(or maximizing a concave function) over a convex set. This allows us to give simple necessary
and sufficient optimality conditions, derive interesting dual problems, find analytical solutions
in some cases, and efficiently compute numerical solutions in all cases.

In this overview we briefly describe some more specific cases of this general problem, which
have been addressed in a series of recent papers.

• Fastest mixing Markov chain. Find edge transition probabilities that give the fastest
mixing (symmetric, discrete-time) Markov chain on the graph.

• Fastest mixing Markov process. Find the edge transition rates that give the fastest mixing
(symmetric, continuous-time) Markov process on the graph.

• Absolute algebraic connectivity. Find edge weights that maximize the algebraic connec-
tivity of the graph (i.e., the smallest positive eigenvalue of its Laplacian matrix). The
optimal value is called the absolute algebraic connectivity by Fiedler.

• Minimum total effective resistance. Find edge weights that minimize the total effective
resistance of the graph. This is same as minimizing the average commute time from any
node to any other, in the associated Markov chain.

• Fastest linear averaging. Find weights in a distributed averaging network that yield
fastest convergence.

• Least steady-state mean-square deviation. Find weights in a distributed averaging net-
work, driven by random noise, that minimizes the steady-state mean-square deviation of
the node values.
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1. Introduction

Let G = (V ,E) be an undirected graph with n = |V | nodes and m = |E| edges,
with weights w1, . . . , wm ∈ R on the edges. Suppose edge l connects vertices (or
nodes) i and j . We define al ∈ R

n as (al)i = 1, (al)j = −1, with other entries 0.
The weighted Laplacian (matrix) is the n× n matrix defined as

L =
m∑
l=1

wlala
T
l = A diag(w)AT ,

where diag(w) ∈ R
m×m is the diagonal matrix formed from w = (w1, . . . , wm) ∈

R
m, and A ∈ R

n×m is the incidence matrix of the graph, A = [a1 · · · am].
We assume that the weights are such that L is positive semidefinite, which we

write as L � 0. This is always the case when the weights are nonnegative. Since
L1 = 0, where 1 is the vector with all components one, L has smallest eigenvalue 0,
corresponding to the eigenvector 1. We denote the eigenvalues of the Laplacian
matrix L as

0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

Let φ be a symmetric closed convex function defined on a convex subset of R
n−1.

Then
ψ(w) = φ(λ2, . . . , λn) (1)

is a convex function ofw [2, §5.2]. Thus, a symmetric convex function of the positive
Laplacian eigenvalues yields a convex function of the edge weights. As a simple
example, consider φ(u1, . . . , un−1) = ∑n−1

i=1 ui , i.e., the sum. In this case we have

ψ(w) =
n∑
i=2

λi =
n∑
i=1

λi = TrL = 21T w,

twice the sum of the edge weights, which is linear and therefore also convex. As
another example, the function φ(u1, . . . , un−1) = maxn−1

i=1 ui (which is convex and
symmetric) yields the functionψ(w) = λn, the largest eigenvalue (or spectral radius)
of the Laplacian matrix (and a convex function of the edge weights).

We consider optimization problems with the general form

minimize ψ(w)

subject to w ∈ W ,
(2)

where W is a closed convex set, and the optimization variable here is w ∈ R
m. The

problem (2) is to choose edge weights on a graph, subject to some constraints, in
order to minimize a convex function of the positive eigenvalues of the associated
Laplacian matrix. We can also handle the case of maximizing a concave function φ
of the positive Laplacian eigenvalues, by minimizing −ψ over w ∈ W .
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The problem (2) is a convex optimization problem. Roughly speaking, this means
that the analysis of the problem is fairly straightforward, and that the problem is easily
solved numerically; see, e.g., [6]. In the cases we will consider, the problem (2) can
be formulated even more specifically as a semidefinite program (SDP), which has the
form

minimize cT x

subject to
∑n
i=1 xiAi � B.

(3)

Here x ∈ R
n is the variable, and the problem data are c ∈ R

n and the symmetric ma-
tricesA1, . . . , An, B ∈ R

k×k . The inequality symbol � between symmetric matrices
refers to inequality with respect to the cone of positive semidefinite matrices. The
constraint

∑n
i=1 xiAi � B is called a linear matrix inequality (LMI). The SDP (3)

can be thought of as a generalization of a linear program (LP),

minimize cT x

subject to
∑n
i=1 xiai ≤ b,

where here, a1, . . . , an, b are vectors, and the inequality symbol between vectors
means componentwise. Many results for LPs have analogs for SDPs; moreover, in
the last 15 years or so, effective algorithms for numerically solving SDPs have been
developed, and are now widely used in many application areas.

2. Fastest mixing Markov chain

In this section we briefly describe the problem of finding the fastest mixing symmetric
Markov chain on a given graph. Many more details (and additional references) can
be found in [4, 5].

We consider a symmetric Markov chain on the graph G, with transition matrix
P ∈ R

n×n, where Pij = Pji is the probability of a transition from vertex i to vertex j .
Since P is symmetric, the uniform distribution πunif = (1/n)1T is an equilibrium
distribution. The rate of convergence of the distribution π(t) to uniform is governed
by μ(P ), the second largest eigenvalue magnitude (SLEM) of P , with smaller μ(P )
meaning faster asymptotic convergence. To find the fastest mixing symmetric Markov
chain on the graph, we must choose the transition matrixP to minimizeμ(P ), subject
to the following conditions:

P = PT , P 1 = 1, Pij ≥ 0, i, j = 1, . . . , n, Pij = 0 for (i, j) �∈ E.
The first three conditions state that P is a symmetric stochastic matrix; the last states
that transitions can only occur over the graph edges.

Identifying the graph edge weights with edge transition probabilities, we find
that P can be expressed as P = I − L. The conditions above are equivalent to the
conditions

w ≥ 0, diag(L) ≤ 1
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imposed on the edge weight vector w. (Here diag(L) is the vector consisting of
the diagonal entries of L, and both inequalities above are vector inequalities, i.e.,
componentwise.)

The eigenvalues of P are 1 − λ1, . . . , 1 − λn. Since 1 − λ1 = 1, and |1 − λi | ≤ 1
(since P is stochastic), its SLEM is given by

μ(P ) = max{|1 − λ2|, . . . , |1 − λn|} = max{1 − λ2, λn − 1}. (4)

This has the general form (1), with φ(u1, . . . , un−1) = maxn−1
i=1 |1−ui |. In particular,

the SLEM μ(P ) is a convex function of the edge transition probabilities. Thus, the
fastest mixing symmetric Markov chain problem can be expressed as our general
problem (2), with W = {w | w ≥ 0, diag(L) ≤ 1}, a polyhedron.

The semidefinite programming formulation of the problem is

minimize γ

subject to −γ I � I − L− (1/n)11T � γ I, w ≥ 0, diag(L) ≤ 1,

with variables w ∈ R
m and γ ∈ R.

Since the fastest mixing symmetric Markov chain problem is convex, indeed,
equivalent to an SDP, it can be solved effectively. Generic methods can be used
for problems with only a few thousand edges; far larger problems, with millions of
edges, can be solved using subgradient optimization techniques, exploiting Lanczos
methods to efficiently compute a few extreme eigenvalues and eigenvectors of I −
L− (1/n)11T ; see [5].

The optimal transition probabilities can be quite interesting; for example, a graph
can have many edges with optimal transition probability zero. This means (roughly)
that those edges are not needed to achieve fastest mixing on the given graph. We also
note that the optimal transition probabilities can yield a mixing rate that is unboundedly
better than some simple standard schemes for assigning transition probabilities for fast
mixing, such as the maximum-degree method, or the Metropolis–Hastings method [5].

Standard methods can be used to construct various dual problems for the fastest
mixing symmetric Markov chain problem. One such dual is

maximize 1T z
subject to Y1 = 0, Y = YT , ‖Y‖∗ ≤ 1

(zi + zj )/2 ≤ Yij , (i, j) ∈ E,
(5)

with variables z ∈ R
n and Y ∈ R

n×n. Here ‖Y‖∗ = ∑n
i=1 |λi(Y )|, the sum of the

singular values of Y , which is the dual norm of the spectral norm. This dual problem
is convex, since the objective, which is maximized, is linear, hence concave, and the
constraints are all convex. We have the following:

• Weak duality. If Y , z are feasible for the dual problem (5), then we have
1T z ≤ μ�, where μ� is the optimal value of the fastest mixing symmetric
Markov chain problem.
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• Strong duality. There exist Y �, z� that are optimal for the dual problem, and
satisfy 1T z� = μ�. This means that the optimal values of the primal and dual
problems are the same, and that the dual problem yields a sharp lower bound
on the optimal SLEM.

Both of these conclusions follow from general results for convex optimization
problems (see, e.g., [10, 1, 6]). We can conclude strong duality using (a refined form
of) Slater’s condition (see, e.g., [1, §3.3] and [6, §5.2]), since the constraints are all
linear equalities and inequalities.

3. Fastest mixing Markov process

Here we briefly describe the problem of finding the fastest mixing continuous-time
symmetric Markov process on a given graph [11].

Consider a continuous-time Markov process on the graph G, with transition rate
(or intensity) wl across edge l. The probability density π(t) ∈ R

1×n at time t ≥ 0
is given by π(t) = π(0)e−tL. It follows that the asymptotic rate of convergence to
the uniform distribution is governed by λ2, the smallest positive eigenvalue of the
Laplacian matrix. The deviation from uniform distribution decays, in the worst case,
as e−λ2t . We can express λ2 as

λ2 = min{λ2, . . . , λn},
which has the standard form (1), with φ(u1, . . . , un−1) = minn−1

i=1 ui . Since the
minimum function is concave, we see that λ2 is a concave function of the edge
weights w. It is evidently homogeneous in w, so to get a sensible problem we must
normalize the weights in some way, for example, as 1T w = 1.

To find the transition rates that give fastest convergence (among weights that sum
to one), we pose the problem

maximize λ2

subject to w ≥ 0, 1T w = 1,

with variable w ∈ R
m. This is a convex optimization problem, which can be formu-

lated as the SDP

maximize γ

subject to γ I � L+ β11T , w ≥ 0, 1T w = 1,

with variables γ, β ∈ R, w ∈ R
m.

The same problem, allocating a fixed total edge weight across the graph edges
so as to maximize the smallest positive Laplacian eigenvalue, arises in other areas.
For example, λ2 arises in graph theory, and is called the algebraic connectivity of the
graph. Fiedler refers to the maximum value of λ2 that can be obtained by allocating
a fixed total weight to the edges of a graph, as its absolute algebraic connectivity [7].
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The dual of the fastest mixing Markov process problem can be given a very inter-
esting interpretation. It is equivalent to the following problem. We are given some
distances d1, . . . , dm on the graph edges. The goal is find a configuration of points
x1, . . . , xn ∈ R

n that satisfy ‖xi − xj‖2 ≤ dl , whenever edge l connects vertices i
and j , and in addition maximizes the total variance, given by

∑
i �=j ‖xi − xj‖2. This

problem was recently formulated in the machine learning literature as a method for
identifying low dimensional structure in data; see, e.g., [12].

4. Minimum total effective resistance

Here we describe the problem of choosing the edge weights to minimize the total
effective resistance of a graph, subject to some given total weight [8]. We consider
the graph as an electrical circuit or network, with the edge weight representing the
conductance (inverse of resistance) of the associated electrical branch. We define Rij
as the resistance in the network seen between nodes i and j . The total effective
resistance is defined as R = ∑

i<j Rij .
The total effective resistance comes up in several applications beyond circuit the-

ory. For example, it is proportional to the average commute time, over all pairs of
vertices, in the random walk on the graph defined by the weights wl [8]. (The prob-
ability of a transition from vertex i to vertex j is wl , the associated edge weight,
divided by the total weight of all edges adjacent to vertex i.)

It can be shown that

R = 1

n

n∑
i=2

1/λi,

i.e., it is proportional to the sum of the inverses of the positive Laplacian eigenvalues.
This follows our general form (1), with φ(u1, . . . , un−1) = ∑n−1

i=1 1/ui , with domain
R
n−1++ . (R++ is the set of positive reals.) In particular, the total effective resistance

is a convex function of the weight vector w. Minimizing total effective resistance,
subject to w ≥ 0 and 1T w = 1, is thus a convex optimization problem.

The problem can be formulated as the SDP

minimize nTr Y
subject to 1T w = 1, w ≥ 0,[

L+ (1/n)11T I

I Y

]
� 0,

with variables w ∈ R
m and the (slack) matrix Y = YT ∈ R

n×n (see [8]).
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5. Fast averaging

Here we describe the problem of choosing edge weights that give fastest averaging,
using a classical linear iteration [13]. The nodes start with value x(0) ∈ R

n, and at
each iteration we update the node values as x(t + 1) = (I − L)x(t). The goal is to
choose the edge weights so that xi(t) converges, as rapidly as possible, to the average
value, i.e., x(t) → (1/n)11T x(0).

This iteration can be given a very simple interpretation. At each step, we replace
each node value with a weighted average of its previous value and its neighbors’
previous values. The weights used to form the average are taken from the graph edge
weights, with the self-weight chosen so that the sum of the adjacent edge weights,
plus the self-weight, equals one. The weights used to carry out this local averaging
sum to one at each node, but can be negative.

When the weights are symmetric (which we assume here), the convergence rate of
this averaging process is determined by the SLEM of I −L, i.e., (4), exactly as in the
Markov chain problem. The difference here is that the weights can be negative; in the
Markov chain, of course, the weights (transition probabilities) must be nonnegative.
The optimal weights can be found by solving the unconstrained problem

minimize maxni=2 |1 − λi |,
which evidently is a convex optimization problem. It can be posed as the SDP

minimize γ

subject to −γ I � L− (1/n)11T � γ I,

with variables γ ∈ R,w ∈ R
m. Without loss of generality, we can assume thatL � 0.

The problem is the same as the fastest mixing symmetric Markov chain problem, but
without the nonnegativity requirement onw. It often happens that some of the optimal
weights are negative [13].

6. Minimum RMS consensus error

Here we describe a variation on the fastest linear averaging problem described above,
in which an additive random noise perturbs the node values [15]. The iteration is
x(t + 1) = (I − L)x(t) + v(t), where v(t) ∈ R

n are uncorrelated zero mean unit
variance random variables, i.e.,

E v(t) = 0, E v(t)v(t)T = I, E v(t)v(s)T = 0, t �= s.

This iteration arises in noisy averaging, distributed data fusion, and load balancing
applications; see the references in [15].



1318 Stephen Boyd

We can measure the effectiveness of the averaging iteration at countering the
effects of the additive noises by the steady-state mean-square deviation, defined as

δss = lim
t→∞ E

(
1

n

∑
i<j

(xi(t)− xj (t))
2
)
.

The steady-state mean-square deviation can be expressed as

δss =
n∑
i=2

1

λi(2 − λi)
,

provided 0 < λi < 2 for i = 2, . . . , n, and is infinite otherwise. (The condition 0 <
λi < 2 for i = 2, . . . , n is the same as max{1−λ2, λn−1} < 1, which is the condition
that the linear iteration for averaging, without the additive noise, converges.) Once
again, this has the standard form (1), with φ(u1, . . . , un−1) = ∑n−1

i=1 1/(ui(2 − ui)),
with domain (0, 2)n−1. In particular, we see that δss is a convex function of the
edge weights. To find the weights that yield the smallest steady-state mean-square
deviation, we simply minimize the convex function δss over w ∈ R

m.

7. Methods

All the problems described above can be effectively solved numerically, by a variety
of standard methods for convex optimization, including interior-point methods for
modest sized problems (with a few thousand weights) and subgradient-based methods
for larger problems. We can exploit structure in the problems (such as sparsity of the
underlying graph) to increase the efficiency of these methods.

We can also exploit symmetry in solving the problems. Two edges are symmet-
ric if there exists an automorphism of the graph that maps one edge to the other.
Whenever two edges are symmetric, we can assume without loss of generality that
the corresponding edge weights are equal. (This follows from a basic result in convex
optimization: there is always a solution that is invariant under the group of permu-
tations that leave the objective function and constraint set fixed.) If the symmetry
group of the graph is large, this can considerably reduce the size of the optimization
problem that needs to be solved. As an extreme example, consider an edge-transitive
graph, i.e., one in which any two edges are symmetric. For such a graph, we can
assume that all edge weights are equal, i.e., there is only one common edge weight
to be determined. This reduces the problem to one with at most one scalar variable
(the common edge weight); if there is an equality constraint, such as 1T w = 1, we
conclude that an optimal solution is given by uniform edge weights,w = (1/m)1 [3].
This idea is used in [9] to reduce some specific weight optimization problems to ones
with a handful of variables, which can be solved analytically.
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