Excesses and deficits of frames in shift-invariant subspaces

A. Askari Hemmat and J.-P. Gabardo

Dept. of Mathematics, Vali-Asr University, Rafsanjan, Iran; Dept. of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada [askari@mail.vru.ac.ir]

2000 Mathematics Subject Classification. 42C40

For an invertible $n \times n$ matrix B and Φ a finite or countable subset of $L^2(R^n)$, consider the collection

$$X = \{ \phi(\cdot - Bk) : \phi \in \Phi, k \in Z^n \},$$

generating the closed subspace \mathcal{M} of $L^2(R^n)$. Let $T_{\mathcal{F}(X)}(\xi)$ denote the frame operator associated with the frame $\{ \mathcal{F}\phi(\xi) \}_{\phi \in \Phi}$ defined for a.e. $\xi \in [0,1)^n$, where \mathcal{F} is the isometric isomorphism between $L^2(R^n)$ and $L^2(T^n, \ell^2(Z^n))$. Using a very nice property of the range function, the Gramian and dual Gramian operators (G and \tilde{G} resp.) and \mathcal{F}, we will show that if \mathcal{M} is a Shift-Invariant subspace generated by X, one need at most m functions, where $m = \| \dim(Ker(\tilde{G}(\cdot))) \|_\infty$, to generate the orthogonal complement of \mathcal{M} in $L^2(R^n)$. Furthermore, if $k \geq m$ or $k = \infty$, one can always find k functions such that the associated Shift-Invariant system form a Parseval tight frame for \mathcal{M}^\perp. Finally we will show that the existence of a collection of m sequences in the orthogonal complement of the range of analysis operator associated with the frame X that satisfies any of four interesting conditions is equivalent to $\dim(Ker(G(\xi)))$, the dimension of the kernel of Gramian operator, being less than or equal to m for almost all $\xi \in [0,1)^n$.